Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions.

TitleNucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions.
Publication TypeJournal Article
Year of Publication2012
AuthorsTetenbaum-Novatt J, Hough LE, Mironska R, McKenney ASophia, Rout MP
JournalMol Cell Proteomics
Volume11
Issue5
Pagination31-46
Date Published2012 May
ISSN1535-9484
KeywordsActive Transport, Cell Nucleus, Algorithms, Amino Acid Sequence, Bacterial Proteins, beta Karyopherins, Binding, Competitive, Escherichia coli, Membrane Transport Proteins, Models, Molecular, Nuclear Pore Complex Proteins, Protein Binding, Receptors, Cytoplasmic and Nuclear, Recombinant Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Serum Albumin, Bovine
Abstract

Nucleocytoplasmic transport occurs through the nuclear pore complex (NPC), which in yeast is a ~50 MDa complex consisting of ~30 different proteins. Small molecules can freely exchange through the NPC, but macromolecules larger than ~40 kDa must be aided across by transport factors, most of which belong to a related family of proteins termed karyopherins (Kaps). These transport factors bind to the disordered phenylalanine-glycine (FG) repeat domains in a family of NPC proteins termed FG nups, and this specific binding allows the transport factors to cross the NPC. However, we still know little in terms of the molecular and kinetic details regarding how this binding translates to selective passage of transport factors across the NPC. Here we show that the specific interactions between Kaps and FG nups are strongly modulated by the presence of a cellular milieu whose proteins appear to act as very weak competitors that nevertheless collectively can reduce Kap/FG nup affinities by several orders of magnitude. Without such modulation, the avidities between Kaps and FG nups measured in vitro are too tight to be compatible with the rapid transport kinetics observed in vivo. We modeled the multivalent interactions between the disordered repeat binding sites in the FG nups and multiple cognate binding sites on Kap, showing that they should indeed be sensitive to even weakly binding competitors; the introduction of such competition reduces the availability of these binding sites, dramatically lowering the avidity of their specific interactions and allowing rapid nuclear transport.

DOI10.1074/mcp.M111.013656
Alternate JournalMol. Cell Proteomics
PubMed ID22357553
PubMed Central IDPMC3418842
Grant ListU54 RR022220 / RR / NCRR NIH HHS / United States
/ / Howard Hughes Medical Institute / United States
F32 GM087854 / GM / NIGMS NIH HHS / United States
T32 GM007739 / GM / NIGMS NIH HHS / United States
R01 GM62427 / GM / NIGMS NIH HHS / United States
R01 GM071329 / GM / NIGMS NIH HHS / United States
R01 GM062427 / GM / NIGMS NIH HHS / United States

Person Type: