Homeostatic enhancement of sensory transduction.

TitleHomeostatic enhancement of sensory transduction.
Publication TypeJournal Article
Year of Publication2017
AuthorsMilewski AR, Maoiléidigh DÓ, Salvi JD, Hudspeth AJ
JournalProc Natl Acad Sci U S A
Volume114
Issue33
PaginationE6794-E6803
Date Published2017 08 15
ISSN1091-6490
KeywordsAlgorithms, Animals, Auditory Threshold, Hair Cells, Auditory, Hearing, Homeostasis, Mechanotransduction, Cellular, Models, Biological, Rana catesbeiana, Saccule and Utricle
Abstract

Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells' ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle's displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell's behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here.

DOI10.1073/pnas.1706242114
Alternate JournalProc. Natl. Acad. Sci. U.S.A.
PubMed ID28760949
PubMed Central IDPMC5565450
Grant ListF30 DC013468 / DC / NIDCD NIH HHS / United States
F30 DC015697 / DC / NIDCD NIH HHS / United States
T32 GM007739 / GM / NIGMS NIH HHS / United States
/ HHMI / Howard Hughes Medical Institute / United States

Person Type: