Structural basis for the transport and regulation mechanism of the Multidrug resistance-associated protein 2.

TitleStructural basis for the transport and regulation mechanism of the Multidrug resistance-associated protein 2.
Publication TypeJournal Article
Year of Publication2024
AuthorsKoide E, Pietz HL, Beltran J, Chen J
JournalbioRxiv
Date Published2024 Jun 25
ISSN2692-8205
Abstract

Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Deficiencies in MRP2 function are associated with Dubin-Johnson Syndrome and increased vulnerability to liver injury from cytotoxic drugs. Using cryogenic electron microscopy (cryo-EM), we determined the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. These structures show that MRP2 functions through the classic alternating access model, driven by ATP binding and hydrolysis. Its cytosolic regulatory (R) domain serves as a selectivity gauge, wherein only sufficiently high concentrations of substrates can effectively compete with and disengage the R domain to initiate transport. Comparative structural analyses of MRP2 in complex with different substrates reveal how the transporter recognizes a diverse array of compounds, highlighting the transporter's role in multidrug resistance.

DOI10.1101/2024.06.24.600277
Alternate JournalbioRxiv
PubMed ID38979242
PubMed Central IDPMC11230190

Person Type: