A C1-C2 Module in Munc13 Inhibits Calcium-Dependent Neurotransmitter Release.

TitleA C1-C2 Module in Munc13 Inhibits Calcium-Dependent Neurotransmitter Release.
Publication TypeJournal Article
Year of Publication2017
AuthorsMichelassi F, Liu H, Hu Z, Dittman JS
JournalNeuron
Volume95
Issue3
Pagination577-590.e5
Date Published2017 Aug 02
ISSN1097-4199
KeywordsAnimals, Biological Transport, Caenorhabditis elegans, Calcium, Carrier Proteins, Exocytosis, Membrane Fusion, Membrane Proteins, Neurotransmitter Agents, Synaptic Transmission, Synaptic Vesicles
Abstract

Almost all known forms of fast chemical synaptic transmission require the synaptic hub protein Munc13. This essential protein has also been implicated in mediating several forms of use-dependent plasticity, but the mechanisms by which it controls vesicle fusion and plasticity are not well understood. Using the C. elegans Munc13 ortholog UNC-13, we show that deletion of the C2B domain, the most highly conserved domain of Munc13, enhances calcium-dependent exocytosis downstream of vesicle priming, revealing a novel autoinhibitory role for the C2B. Furthermore, C2B inhibition is relieved by calcium binding to C2B, while the neighboring C1 domain acts together with C2B to stabilize the autoinhibited state. Selective disruption of Munc13 autoinhibition profoundly impacts nervous system function in vivo. Thus, C1-C2B exerts a basal inhibition on Munc13 in the primed state, permitting calcium- and lipid-dependent control of C1-C2B to modulate synaptic strength.

DOI10.1016/j.neuron.2017.07.015
Alternate JournalNeuron
PubMed ID28772122
PubMed Central IDPMC5569903
Grant ListR01 GM095674 / GM / NIGMS NIH HHS / United States
T32 GM007739 / GM / NIGMS NIH HHS / United States

Person Type: