The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts.

TitleThe contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts.
Publication TypeJournal Article
Year of Publication1976
AuthorsTaylor DL, Rhodes JA, Hammond SA
JournalJ Cell Biol
Volume70
Issue1
Pagination123-43
Date Published1976 Jul
ISSN0021-9525
KeywordsActins, Adenosine Triphosphate, Amoeba, Animals, Calcium, Cytoplasm, Cytoplasmic Streaming, Hydrogen-Ion Concentration, Magnesium, Molecular Weight, Myosins, Osmolar Concentration, Proteins
Abstract

The role of calcium and magnesium-ATP on the structure and contractility in motile extracts of Amoeba proteus and plasmalemma-ectoplasm "ghosts" of Chaos carolinensis has been investigated by correlating light and electron microscope observations with turbidity and birefringence measurements. The extract is nonmotile and contains very few F-actin filaments and myosin aggregates when prepared in the presence of both low calcium ion and ATP concentrations at an ionic strength of I = 0.05, pH 6.8. The addition of 1.0 mM magnesium chloride, 1.0 mM ATP, in the presence of a low calcium ion concentration (relaxation solution) induced the formation of some fibrous bundles of actin without contracting, whereas the addition of a micromolar concentration of calcium in addition to 1.0 mM magnesium-ATP (contraction solution) (Taylor, D. L., J. S. Condeelis, P. L. Moore, and R. D. Allen. 1973. J. Cell Biol. 59:378-394) initiated the formation of large arrays of F-actin filaments followed by contractions. Furthermore, plasmalemma-ectoplasm ghosts prepared in the relaxation solution exhibited very few straight F-actin filaments and myosin aggregates. In contrast, plasmalemmaectoplasm ghosts treated with the contraction solution contained many straight F-actin filaments and myosin aggregates. The increase in the structure of ameba cytoplasm at the endoplasm-ectoplasm interface can be explained by a combination of the transformation of actin from a less filamentous to a more structured filamentous state possibly involving the cross-linking of actin to form fibrillar arrays (see above-mentioned reference) followed by contractions of the actin and myosin along an undetermined distance of the endoplasm and/or ectoplasm.

DOI10.1083/jcb.70.1.123
Alternate JournalJ. Cell Biol.
PubMed ID6480
PubMed Central IDPMC2109811